字节跳动与英伟达、加州大学河滨分校联合发表的论文 《ByteTransformer: A High-Performance Transformer Boosted for Variable-Length Inputs》在第37届IEEE国际并行和分布式处理大会(IPDPS 2023)中,从396篇投稿中脱颖而出,荣获《IPDPS 2023 最佳论文奖》。
获奖证书
论文提出了字节跳动的GPU transformer推理库——ByteTransformer。
IPDPS: 并行和分布式计算方向计算机系统领域的旗舰会议。该会议专注于分享并讨论并行计算、分布式计算、大规模数据处理以及高性能计算等相关领域的最新研究进展。参与的专家学者来自世界各地的顶尖研究机构和企业,共同探讨该领域的创新发展和前沿技术。
代码地址:https://github.com/bytedance/ByteTransformer
ByteTransformer是一种高效的Transformer实现,它通过一系列优化手段,实现了在BERT Transformer上的高性能表现。对于变长文本输入,相比其他Transformer实现,ByteTransformer具有明显的优势,实验中平均加速可达50%以上。适用于加速自然语言处理任务,提高模型训练与推理的效率。同时,ByteTransformer也为其他研究者提供了一种高效的Transformer实现方式,其优化手段和性能表现对于实际应用具有重要意义。
此次获奖论文,主要由火山引擎机器学习平台技术团队参与编写,火山引擎机器学习平台为抖音/今日头条/西瓜视频等业务提供推荐、广告、CV、语音、NLP的训练和推理系统;同时,火山引擎也将机器学习和推荐系统的核心能力提供给外部企业客户。