这个引擎提供了与 Apache Hadoop 生态系统的集成,允许通过 ByteHouse / ClickHouse 管理 HDFS 上的数据。这个引擎类似于 文件 和 URL 引擎,但提供了 Hadoop 的特定功能。
ENGINE = HDFS(URI, format)
URI
参数是 HDFS 中整个文件的 URI。 format
参数指定一种可用的文件格式。 执行 SELECT
查询时,格式必须支持输入,以及执行 INSERT
查询时,格式必须支持输出. 你可以在 格式 章节查看可用的格式。 路径部分 URI
可能包含 glob 通配符。 在这种情况下,表将是只读的。
示例:
1. 设置 hdfs_engine_table
表:
CREATE TABLE hdfs_engine_table (name String, value UInt32) ENGINE=HDFS('hdfs://hdfs1:9000/other_storage', 'TSV')
2. 填充文件:
INSERT INTO hdfs_engine_table VALUES ('one', 1), ('two', 2), ('three', 3)
3. 查询数据:
SELECT * FROM hdfs_engine_table LIMIT 2
┌─name─┬─value─┐ │ one │ 1 │ │ two │ 2 │ └──────┴───────┘
ALTER
和 SELECT...SAMPLE
操作。路径中的通配符
多个路径组件可以具有 globs。 对于正在处理的文件应该存在并匹配到整个路径模式。 文件列表的确定是在 SELECT
的时候进行(而不是在 CREATE
的时候)。
*
— 替代任何数量的任何字符,除了 /
以及空字符串。?
— 代替任何单个字符.{some_string,another_string,yet_another_one}
— 替代任何字符串 'some_string', 'another_string', 'yet_another_one'
.{N..M}
— 替换 N 到 M 范围内的任何数字,包括两个边界的值.带 {}
的结构类似于 远程 表函数。
示例
假设我们在 HDFS 上有几个 TSV 格式的文件,文件的 URI 如下:
CREATE TABLE table_with_range (name String, value UInt32) ENGINE = HDFS('hdfs://hdfs1:9000/{some,another}_dir/some_file_{1..3}', 'TSV')
另一种方式:
CREATE TABLE table_with_question_mark (name String, value UInt32) ENGINE = HDFS('hdfs://hdfs1:9000/{some,another}_dir/some_file_?', 'TSV')
表由两个目录中的所有文件组成(所有文件都应满足query中描述的格式和模式):
CREATE TABLE table_with_asterisk (name String, value UInt32) ENGINE = HDFS('hdfs://hdfs1:9000/{some,another}_dir/*', 'TSV')
警告
如果文件列表包含带有前导零的数字范围,请单独使用带有大括号的构造或使用 ?
.
示例
创建具有名为文件的表 file000
, file001
, … , file999
:
CREARE TABLE big_table (name String, value UInt32) ENGINE = HDFS('hdfs://hdfs1:9000/big_dir/file{0..9}{0..9}{0..9}', 'CSV')
与 GraphiteMergeTree 类似,HDFS 引擎支持使用 ClickHouse 配置文件进行扩展配置。有两个配置键可以使用:全局 (hdfs
) 和用户级别 (hdfs_*
)。首先全局配置生效,然后用户级别配置生效 (如果用户级别配置存在) 。
<!-- Global configuration options for HDFS engine type --> <hdfs> <hadoop_kerberos_keytab>/tmp/keytab/clickhouse.keytab</hadoop_kerberos_keytab> <hadoop_kerberos_principal>clickuser@TEST.CLICKHOUSE.TECH</hadoop_kerberos_principal> <hadoop_security_authentication>kerberos</hadoop_security_authentication> </hdfs> <!-- Configuration specific for user "root" --> <hdfs_root> <hadoop_kerberos_principal>root@TEST.CLICKHOUSE.TECH</hadoop_kerberos_principal> </hdfs_root>
参数 | 默认值 |
---|---|
rpc_client_connect_tcpnodelay | true |
dfs_client_read_shortcircuit | true |
output_replace-datanode-on-failure | true |
input_notretry-another-node | false |
input_localread_mappedfile | true |
dfs_client_use_legacy_blockreader_local | false |
rpc_client_ping_interval | 10 * 1000 |
rpc_client_connect_timeout | 600 * 1000 |
rpc_client_read_timeout | 3600 * 1000 |
rpc_client_write_timeout | 3600 * 1000 |
rpc_client_socket_linger_timeout | -1 |
rpc_client_connect_retry | 10 |
rpc_client_timeout | 3600 * 1000 |
dfs_default_replica | 3 |
input_connect_timeout | 600 * 1000 |
input_read_timeout | 3600 * 1000 |
input_write_timeout | 3600 * 1000 |
input_localread_default_buffersize | 1 1024 1024 |
dfs_prefetchsize | 10 |
input_read_getblockinfo_retry | 3 |
input_localread_blockinfo_cachesize | 1000 |
input_read_max_retry | 60 |
output_default_chunksize | 512 |
output_default_packetsize | 64 * 1024 |
output_default_write_retry | 10 |
output_connect_timeout | 600 * 1000 |
output_read_timeout | 3600 * 1000 |
output_write_timeout | 3600 * 1000 |
output_close_timeout | 3600 * 1000 |
output_packetpool_size | 1024 |
output_heartbeat_interval | 10 * 1000 |
dfs_client_failover_max_attempts | 15 |
dfs_client_read_shortcircuit_streams_cache_size | 256 |
dfs_client_socketcache_expiryMsec | 3000 |
dfs_client_socketcache_capacity | 16 |
dfs_default_blocksize | 64 1024 1024 |
dfs_default_uri | "hdfs://localhost:9000" |
hadoop_security_authentication | "simple" |
hadoop_security_kerberos_ticket_cache_path | "" |
dfs_client_log_severity | "INFO" |
dfs_domain_socket_path | "" |
参数 | 默认值 |
---|---|
hadoop_kerberos_keytab | "" |
hadoop_kerberos_principal | "" |
libhdfs3_conf | "" |
_path
— 文件路径._file
— 文件名.