本页面提供一个向量数据里 VikingDB 通过 Python SDK 创建数据集、写入数据、创建索引和检索查询的完整请求示例。
# 写给用户的样例 fields = [ Field( field_name="doc_id", field_type=FieldType.String, is_primary_key=True ), Field( field_name="text_vector", field_type=FieldType.Vector, dim=10 ), Field( field_name="like", field_type=FieldType.Int64, default_val=0 ), Field( field_name="price", field_type=FieldType.Float32, default_val=0 ), Field( field_name="author", field_type=FieldType.List_String, default_val=[] ), Field( field_name="aim", field_type=FieldType.Bool, default_val=True ), ] res = vikingdb_service.create_collection("example", fields, "This is an example") # 返回一个collection实例 print(res) res = vikingdb_service.get_collection("example") # 返回一个collection实例 print(res) vikingdb_service.drop_collection("example") # 无返回 res = vikingdb_service.list_collections() # 返回一个列表 print(res) vector_index = VectorIndexParams(distance=DistanceType.COSINE,index_type=IndexType.HNSW, quant=QuantType.Float) res = vikingdb_service.create_index("example","example_index", vector_index, cpu_quota=2, description="This is an index", partition_by="like", scalar_index=None) # 返回一个index实例 print(res) res = vikingdb_service.get_index("example", "example_index") # 返回一个index实例 print(res.description) vikingdb_service.drop_index("example", "example_index") # 无返回 res = vikingdb_service.list_indexes("example") # 返回一个列表 print(res) def gen_random_vector(dim): res = [0, ] * dim for i in range(dim): res[i] = random.random() - 0.5 return res collection = vikingdb_service.get_collection("example") field1 = {"doc_id": "11", "text_vector": gen_random_vector(10), "like": 1, "price": 1.11, "author": ["gy"], "aim": True} field2 = {"doc_id": "22", "text_vector": gen_random_vector(10), "like": 2, "price": 2.22, "author": ["gy", "xjq"], "aim": False} field3 = {"doc_id": "33", "text_vector": gen_random_vector(10), "like": 1, "price": 3.33, "author": ["gy", "xjq"], "aim": False} field4 = {"doc_id": "44", "text_vector": gen_random_vector(10), "like": 1, "price": 4.44, "author": ["gy", "xjq"], "aim": False} data1 = Data(field1) data2 = Data(field2) data3 = Data(field3) data4 = Data(field4) datas = [] datas.append(data1) datas.append(data2) datas.append(data3) datas.append(data4) collection.upsert_data(datas) # 无返回 collection = vikingdb_service.get_collection("example") res = collection.fetch_data(["11", "22", "33", "44"]) # 返回一个列表 for item in res: print(item) print(item.fields) collection = vikingdb_service.get_collection("example") collection.delete_data("11") # 无返回 index = vikingdb_service.get_index("example", "example_index") res = index.fetch_data(["11", "33"], partition="1", output_fields=["doc_id", "like"]) # 返回一个列表 for item in res: print(item) print(item.fields) index = vikingdb_service.get_index("example", "example_index") res = index.search_by_id("11", limit=2, output_fields=["doc_id", "like", "text_vector"], partition="1") # 返回一个列表 for item in res: print(item) print(item.fields) index = vikingdb_service.get_index("example", "example_index") def gen_random_vector(dim): res = [0, ] * dim for i in range(dim): res[i] = random.random() - 0.5 return res res = index.search_by_vector(gen_random_vector(10), limit=2, output_fields=["doc_id", "like", "text_vector"], partition="1") # 返回一个列表 for item in res: print(item) print(item.fields) index = vikingdb_service.get_index("example", "example_index") def gen_random_vector(dim): res = [0, ] * dim for i in range(dim): res[i] = random.random() - 0.5 return res res = index.search(order=VectorOrder(gen_random_vector(10)), limit=2, output_fields=["doc_id", "like", "text_vector"], partition="1", filter={"op": "range", "field": "price", "lt": 3.5}) # 返回一个列表 for item in res: print(item) print(item.fields) res = index.search(order=ScalarOrder("price", Order.Desc), limit=6, output_fields=["price"], partition="1", filter={"op": "range", "field": "price", "lt": 5}) # 返回一个列表 for item in res: print(item) print(item.fields) # 含有text字段的测试 fields = [ Field( field_name="doc_id", field_type=FieldType.String, is_primary_key=True ), Field( field_name="text", field_type=FieldType.Text, pipeline_name="text_split_bge_large_zh" ), Field( field_name="like", field_type=FieldType.Int64, default_val=0 ), Field( field_name="price", field_type=FieldType.Float32, default_val=0 ), Field( field_name="author", field_type=FieldType.List_String, default_val=[] ), Field( field_name="aim", field_type=FieldType.Bool, default_val=True ), ] res = vikingdb_service.create_collection("example_text", fields, "This is an example include text") vector_index = VectorIndexParams(distance=DistanceType.COSINE, index_type=IndexType.HNSW, quant=QuantType.Float) res = vikingdb_service.create_index("example_text", "example_index_text", vector_index, cpu_quota=2, description="This is an index include text", partition_by="like", scalar_index=None) collection = vikingdb_service.get_collection("example_text") field1 = {"doc_id": "11", "text": {"text":"this is one"}, "like": 1, "price": 1.11, "author": ["gy"], "aim": True} field2 = {"doc_id": "22", "text": {"text":"this is two"}, "like": 2, "price": 2.22, "author": ["gy", "xjq"], "aim": False} field3 = {"doc_id": "33", "text": {"text":"this is three"}, "like": 1, "price": 3.33, "author": ["gy", "xjq"], "aim": False} field4 = {"doc_id": "44", "text": {"text":"this is four"}, "like": 1, "price": 4.44, "author": ["gy", "xjq"], "aim": False} data1 = Data(field1) data2 = Data(field2) data3 = Data(field3) data4 = Data(field4) datas = [] datas.append(data1) datas.append(data2) datas.append(data3) datas.append(data4) collection.upsert_data(datas) # 无返回 index = vikingdb_service.get_index("example_text", "example_index_text") res = index.search_by_text(Text(text="this is five"), filter={"op": "range", "field": "price", "lt": 4}, limit=3, output_fields=["doc_id", "text", "price", "like"], partition=1) for item in res: print(item) print(item.fields) list = [RawData("text","hello1"), RawData("text","hello2")] res = vikingdb_service.embedding(EmbModel("bge_large_zh"), list) print(res) for item in res: print(item)